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Abstract
We present a deterministic kinetic data structure for the facility location problem that maintains

a subset of the moving points as facilities such that, at any point of time, the accumulated cost for
the whole point set is at most a constant factor larger than the current optimal cost. At any point
of time, the cost that arise for a point depends on the status and the position of the point. In the
case that a point is currently a facility it causes maintenance cost, otherwise it causes connection
cost depending on its demand and its distance to the nearest facility. In our scenario, each point
can change its status between client and facility and moves continuously along a known trajectory
in a d-dimensional Euclidean space, where d is a constant.

Our kinetic data structure needsO(n(logd(n)+log(nR))) space, where R := maxpi∈P fi ·maxpi∈P di

minpi∈P fi ·minpi∈P di
,

P = {p1, p2, . . . , pn} is the set of given points, and fi, di are the maintenance cost and the
demand of a point pi, respectively. In the case that each trajectory can be described by a
bounded degree polynomial, the data structure processes O(n2 log2(nR)) events, each requiring
O(log(nR)) status changes and O(logd+1(n) · log(nR)) time. This results in a total processing time
of O(n2 logd+1(n) · log3(nR)). To the best of our knowledge, this is the �rst kinetic data structure
for the facility location problem.

1 Introduction
The facility location problem is a fundamental combinatorial problem in computer science. In its
classical interpretation, the goal is to �nd an optimal placement of industrial facilities or warehouses,
such that the combined cost for the maintenance of the facilities and the transportation cost for the
customers are minimized.

In this work, we consider a scenario of continuously moving objects. Each object can either be a
facility or a client. Applications for this scenario are for example in sensor networks and mobile ad-hoc
networks. In these networks, nodes move continuously and interact with each other. Often they are
organized in a hierarchical way, where the upper layer o�ers the lower layer a certain service, such as
a routing infrastructure. Each node can act as a server, but, at any time, cost arises for each node
that is set up or maintained as a server. This additional overhead for a server is caused by a higher
energy consumption due to message passing, storing of routing tables etc. Since each node should be
able to access a service as fast as possible, there is also a cost for each client, namely the delay time
which depends on the distance to the nearest server. Now imagine that, to decrease the total cost
for the system, nodes are allowed to change their status from server to client or vice versa. Then we
have the kinetic facility location problem. In particular, one scenario, in which the above described
hierarchical communication system is used, are teams of robots that are deployed in unknown terrain
and that have to satisfy certain tasks autonomously. Providing the required services, including storing
the data, setting up communication channels, or maintaining equipment, induces some concurrent
cost. Finding the proper subset of robots that should provide this service, while the team is moving



through the terrain, is the kinetic facility location problem. However, there are other applications
as well. Assume, for example, a future generation of route guiding systems, in which road networks
are continuously monitored by satellites, and tra�c congestion parameters (e.g., current location and
length) are communicated in real-time to the on-board navigation units in cars. As a communication
channel to a satellite induces very high cost, it is not desirable to establish communication channels to
all on-board units. Thus, for cost minimization, we have to choose a subset of on-board units which
are connected to the satellites and act as relays for all units in neighboring cars. Solving this problem
is exactly the facility location problem: A relay unit (a facility) induces maintenance cost (the satellite
connection) and a non-relay unit (a client) causes connection cost (radio connection to a relay unit)
depending on the distance to the nearest relay unit. Since cars move, it is straightforward to assume
the setting to be in motion.

Kinetic Data Structures. The kinetic data structure (KDS) framework is well-suited to maintain
a combinatorial structure of continuously moving objects and common in the �eld of computational
geometry [8, 11, 21]. In this framework, we are given a set of objects and a �ight plan, i.e., each
object moves continuously along a known trajectory. Furthermore, at any point of time, it is possible
to change the �ight plan by performing a so called �ight plan update, which means that one object
changes its trajectory. The main idea is now that the continuous motion of the objects is utilized in
a way that updates take place only at discrete points of time and can be processed fast. As a result,
a lot of computational e�ort can be saved maintaining the KDS compared to handling just a series
of instances of the corresponding static problem. To guarantee that the required properties of the
combinatorial structure are satis�ed at any point of time, a KDS ensures that certain certi�cates are
always hold up. Certi�cates provide a proof that the combinatorial structure has the desired property.
Whenever a certi�cate fails, we call this an event, and an update is required. To be able to handle
each of these events at the correct time, an event queue is maintained.

There are four important properties to measure the quality of a KDS. The worst-case amount of
time to process an update is called responsiveness. The second and third property are compactness
and locality. The compactness is given by the ratio between the maximum size of the event queue and
the complexity of the moving objects. The latter term addresses the maximum number of events in the
queue, in which one object can be involved in. As a result, the locality is a measure on how easily �ight
plan updates can be performed. The fourth property, the e�ciency of a KDS, is the ratio between
the number of total events processed by the KDS and the minimum number of events that would have
been su�cient to maintain a solution for the given kinetic problem. We say that a KDS is responsive,
compact, local, and e�cient, respectively, if the associated value is at most poly-logarithmic in the
complexity of the moving points.

One challenge to construct a KDS for the facility location problem is that the underlying combi-
natorial structure of an exact solution is not stable. More precisely, a slight change of the position
of a point in an exact solution might require an update on all the points to restore an optimal so-
lution. Therefore, we use a new approach to comply with the condition that an update takes only
poly-logarithmic time. This requires that the in�uence of opening or closing a facility is bounded in
an appropriate way.

Related Work. The facility location problem has been extensively studied in combinatorial opti-
mization and operations research. In general, the problem is known to be NP-complete. The �rst
constant factor approximation algorithm was given by Shmoys et al. [35]. Many other approximation
algorithms followed [14, 15, 28, 29, 33, 36]. Currently, the best approximation algorithm for general
metrics achieves an approximation ratio of 1.52 [32]. This is close to the best known lower bound of
1.463 [20]. For the Euclidean case, there exists a randomized PTAS [31]. The facility location problem
has also been investigated in other settings, for instance, distributed [19, 34] and dynamic settings
[27], but so far no algorithm is known in the kinetic setting. Unfortunately, it does not seem that the
only known (1 + ε)-approximation given in [31] can be translated to this setting, since the authors
use the Arora-scheme including dynamic programming techniques, which does not well comply with
kinetization.
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The KDS framework was introduced and applied on the convex hull problem by Basch et al. [11].
Later KDSs for measuring various descriptors of the extent of a set of points, including the diameter,
width, or smallest bounding box, have been designed [6, 8]. Several further algorithms that use
the KDS framework have been developed, e.g., algorithms for kinetic collision detection [10, 25, 30],
kinetic planar subdivisions [4, 3, 7], kinetic range searching [1, 12], kinetic kd-trees [2, 5], and kinetic
connectivity for unit disks, rectangles, and hypercubes [22, 26]. Only some results are known for
problems related to clustering, to which the facility location problem belongs to. For instance, Gao
et al. [18] provided a KDS to maintain an expected constant factor approximation for the minimal
number of centers to cover all points for a given radius. The centers that they considered are a subset
of the moving nodes, whereas Bespamyatnikh et al. [13] studied k-center problems for k = 1 in the KDS
framework, where the centers are not necessarily located at the moving points. Another algorithm for
the kinetic k-center problem can be found in [17]. Hershberger [24] proposed a kinetic algorithm for
maintaining a covering of the moving points in Rd by unit boxes such that the number of boxes is
always within a factor of 3d of the optimal static covering at any instance. Recently, Czumaj et al. [16]
presented a KDS for the Euclidean MaxCut problem. For other work on KDSs, we refer to the survey
by Guibas [21].

Har-Peled [23] considered the k-center problem in a mobile setting di�erent from the KDS frame-
work, where the number of centers is �xed to exactly k. Instead of handling events, a static set is
provided, which ensures a constant factor approximation at all times. However, a set of size kµ+1 is
required, where µ is the degree of the polynomial of the trajectories.

Our Contribution. We present a KDS for the facility location problem that gets as input a set of
n points in Rd, where d is a constant, and for each given point a trajectory. At any point of time,
each point is either a facility (then we call the point open) or a client (then we call the point closed).
The cost that arises for a facility persist during the entire time it is open. Analogously, a client has to
pay some cost for its connection to a facility permanently. Our KDS maintains a subset of the moving
points as facilities such that, at any time, the sum of the maintenance cost for the facilities and the
connection cost for the clients is at most a constant factor larger than the current optimal cost. To
be able to ensure this, we keep up the invariant that, on the one hand, for each client there exists a
facility in a certain local neighborhood and, on the other hand, no facility has another facility in a
certain local neighborhood. The problem is now that restoring the invariant at one point (by changing
the status of the point from open to close or vice versa) can lead to a violation of the invariant at many
other points. Our main technical contribution is a technique that allows us to restore the invariant in
poly-logarithmic time.

To �nd an initial set of facilities, we use a modi�ed version of the algorithm of Mettu and Plaxton
[33]. Each following update can be processed in O(logd+1(n) · log(nR)) time, where R is the ratio
of the product of the maximum maintenance cost and demand to the product of their corresponding
minimum values. Hence, our data structure is responsive, provided that R = O(npolylog(n)). We point
out that the number of status changes per event is O(log(nR)). In the case that each trajectory can be
described by a bounded degree polynomial, we can bound the number of events by O(n2 log2(nR)) and
get a total processing time of O(n2 logd+1(n) · log3(nR)). Flight plan updates can be easily performed
with low computational cost, so that the criterion of locality holds. And �nally, our data structure is
compact because the total space requirement is O(n(logd(n) + log(nR))).

Organization of the paper. After giving a formal de�nition of the kinetic facility location problem
and introducing some basics used throughout the paper, we describe how the KDS for the facility
location problem is designed. Then we prove that at any time it is guaranteed that our current set of
facilities leads to a total cost which is at most a constant factor larger than the current optimal cost.
Afterwards, we analyze our KDS in terms of its running time and its space requirement. Finally, we
conclude with Section 5.
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2 Preliminaries
We de�ne the kinetic facility location problem as follows. Let P = {p1, p2, . . . , pn} be a set of n
independently moving points in Rd, where d is a constant. Let pi(t) denote the position of pi at time
t and let P(t) = {p1(t), p2(t), . . . , pn(t)}. Furthermore, let M be the description of the movement of
the points in P. At any point of time t, the set P(t) is divided into two subsets, namely the current
set of facilities F(t) and the current set of clients G(t) = P(t)\F(t). For each point pi(t) ∈ P(t),
there exists a non-negative maintenance cost fi, that has to be paid at time t if pi(t) is a facility, and
a non-negative demand di. Note that both the maintenance cost and the demand of a point do not
change over time. The problem is now to maintain, at each point of time t, a subset F(t) ⊆ P(t), such
that

cost(F(t)) :=
∑

pi(t)∈F(t)

fi +
∑

pj(t)∈G(t)

dj ·D(pj(t),F(t))

is minimized. Here, D(pj(t),F(t)) is the minimum Euclidean distance from pj(t) to a facility in F(t).
We let FOpt(t) denote an optimal set of facilities at time t.

In the following, we introduce some basics required for our approach to handle the kinetic facility
problem. The main idea is to use a set of nested cubes around each point and to update the KDS each
time a point enters or leaves a cube of another point.

Cubes. For a point pi(t) ∈ P(t) and a non-negative value r, we de�ne C(pi(t), r) to be the axis-
parallel cube whose center is the point pi(t) and whose side length is 2r. Given such a cube C(pi(t), r),
we let weight(C(pi(t), r)) denote the sum of the demands of all the points in P(t) that are located in
the cube C(pi(t), r), i.e., we de�ne

weight(C(pi(t), r)) :=
∑

pj(t)∈P(t)∩C(pi(t),r)

dj .

Radius associated with a point. For each point pi(t) ∈ P(t), we calculate a special radius r∗i (t)
which is an approximation for the radius ri(t) of the ball with center pi(t) that is used in [33] and
satis�es ∑

pj(t)∈P(t)|D(pi(t),pj(t))≤ri(t)

dj · (ri(t)−D(pi(t), pj(t))) = fi .

Due to this de�nition, ri(t) ranges from
minpj∈P fj

n·maxpj∈P dj
to maxpj∈P fj

minpj∈P dj
. To obtain a constant factor approx-

imation for ri(t), we de�ne r∗i (t) to be the value 2k∗ , such that k∗ = k0 + dlog(4
√

d)e and k0 is the
minimum integer k with log(

minpj∈P fj

n·maxpj∈P dj
) ≤ k ≤ log(

maxpj∈P fj

minpj∈P dj
), for which weight(C(pi(t), 2k0)) ≥ 2−k0

holds. The choice of k∗ is explained in Section 4. Hence, due to our de�nition, we have to consider
only O(log(nR)) possible values for the radii, where R := maxpi∈P fi ·maxpi∈P di

minpi∈P fi ·minpi∈P di
.

Note that the cube C(pi(t), r∗i (t)) is a ball with radius r∗i (t) with respect to the L1-metric. Hence,
we approximate the set of radii

⋃
pi(t)∈P(t) ri(t) of the balls for a point set P(t), where the distance

measure is given by the L2-metric, by a set of radii of special balls for P(t), where the distance measure
is given by the L1-metric.

Walls around a point. We consider a set of O(log(nR)) nested cubes for each point pi(t) ∈ P(t). In
particular, there is the cube C(pi(t), 2k) with radius 2k for each k ∈ {dlog(

minpj∈P fj

n·maxpj∈P dj
)e+ dlog(4

√
d)e,

dlog(
minpj∈P fj

n·maxpj∈P dj
)e + 1 + dlog(4

√
d)e, . . . , blog(

maxpj∈P fj

minpj∈P dj
)c + dlog(4

√
d)e}. The side faces of the cube

de�ned by C(pi(t), 2k) form a wall around pi(t), which we call Wi,k(t). Hence, there exists a set of
O(log(nR)) walls for pi(t). We use this set of walls to determine the points of time when an update
of pi in our KDS is required. In general, an event occurs each time when any point crosses any wall of
another point.
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Range Trees. We maintain two (d+1)-dimensional dynamic range trees as data structures denoted
by T1 and T2. At any time, range tree T1 is used to manage the current set of facilities, and T2 stores
the current set of clients. Apart from the fact that the two data structures contain di�erent point sets,
they are constructed in the same way. In the �rst d levels of the range trees, the points are handled
according to their coordinates and in the (d + 1)-st level according to their special radii. Additionally,
with each node v in every binary search tree of the (d+1)-st level, we store the sum of the demands of
all the points contained in the subtree of v. Beside the two range trees, we maintain a binary search
tree T that contains for each point in P its coordinates currently stored in T1 or T2 and its status.
The points are sorted according to their indices.

The dynamic data structure described in [12] supports all required properties of T1 and T2 e�ciently.
In particular, a range tree for a set of n points in Rd+1 has size O(n logd(n)) and can be built in
O(n logd+1(n)) time. We can maintain this data structure inO(logd+1(n)) worst case time per insertion
and deletion. Given any orthogonal range in Rd+1, we can output the points inside the range in
O(logd+1(n) + N) time, where N is the output size. Due to the additional information stored at each
node in level d + 1 of the range trees, we can also compute the sum of the demands of all the points in
a certain range in O(logd+1(n)) time. Finally, we can output the status of a given point in O(log(n))
time by querying T .

The movement of the points is re�ected by insertion and deletion operations on T1 and T2 upon
an event. That means that the actual position of any point pi is represented by its coordinates at
the latest event it was involved in. Although its exact coordinates might slightly deviate between two
events that involve pi, we will show that, at any point of time t, pi(t) is stored in the correct range
with respect to the walls of all other points. That means, if pi(t) is located between two walls Wj,k(t)

and Wj,k′(t) of any point pj(t) then this is also re�ected in the positions of pi and pj stored in the range
trees at time t.

The Mettu-Plaxton Algorithm. We denote the initial position of a point pi ∈ P by pi(t0).
Furthermore, we use the expression that we open a facility at a certain point to declare that the status
of this point changes from closed to open. Analogously, closing a facility means a status change from
open to closed.

Algorithm 2.1 Mettu-Plaxton(P)
1: calculate the radius r∗i (t0) for each point pi(t0) ∈ P(t0)
2: sort all points in ascending order according to their radii
3: let p1(t0), p2(t0), . . . , pn(t0) be the sorted sequence
4: for i = 1 to n do
5: if there is no facility in C(pi(t0), 2 · r∗i (t0)) then
6: open facility at pi(t0)

To get an initial set of facilities, we apply Algorithm 2.1 on the input points. This algorithm is
almost the algorithm of Mettu and Plaxton [33]. However, the radius r∗i (t0) is the above described
approximation of the original value ri(t0). In Section 4, we prove that this modi�cation still yields a
constant factor approximation for the facility location problem.

Note that this greedy algorithm is only used to �nd an initial solution. Unfortunately, we cannot
apply this approach to obtain a KDS with poly-logarithmic update time. The reason is that similar to
maintaining an exact solution for the facility location problem, keeping up the solution provided by the
original Mettu-Plaxton algorithm is not stable. That means, a slight perturbation of the input might
result in Ω(n) status changes, whereas we are looking for stable solutions, where only a poly-logarithmic
number of changes occur upon on an event.

3 The Kinetic Data Structure
This section addresses the design of our KDS for the facility location problem. In particular, we
describe how the event queue is structured and how an update of the KDS is processed.
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3.1 Event Queue
To maintain a subset of the moving points as facilities, such that the associated cost is at most a
constant factor larger than the current optimal cost, we have to update our KDS at certain points
of time. More precisely, we perform an update each time a point pj(t) crosses a wall Wi,k(t), where
dlog(

minpj∈P fj

n·maxpj∈P dj
)e+ dlog(4

√
d)e ≤ k ≤ blog(

maxpj∈P fj

minpj∈P dj
)c+ dlog(4

√
d)e, of another point pi(t).

In order to keep track of these events, we need another data structure beside the two range trees:
For each dimension `, 1 ≤ ` ≤ d, we store all n points and all O(n · log(nR)) wall faces that are
orthogonal to the `-th coordinate axis in a list sorted by the `-coordinate. For each consecutive pair
in each of the d lists, we keep up one certi�cate to certify the sorted order of the lists. We de�ne the
failure time of the certi�cate for any pair of consecutive objects to be the �rst future time when these
objects swap their places in their sorted list. The failure times of all certi�cates are maintained in one
event queue.

For simplicity we assume that the points are in general position. Then at most two events occur
at the same time. If this happens we handle them in an arbitrary order. Certainly, it is not the case
that each event implicates that a point crosses a wall of another point (as, e.g., swapping of two wall
faces also causes an event), but de�nitely every crossing of a wall is discovered by a failure of at least
one certi�cate. The event queue has the following complexity:

Lemma 3.1 The event queue for the kinetic facility location problem has size O(n log(nR)), can be
initialized in O(n log2(nR)) time, and updated in O(log(nR)) time. Provided that each trajectory can
be described by a bounded degree polynomial, the total number of events is O(n2 log2(nR)). A �ight
plan update involves O(log(nR)) certi�cates and requires O(log2(nR)) time.

Proof: The initialization of the lists and the event queue can be done by simple sorting operations
in O(n log2(nR)) time. In each following update we have to re-calculate the points of time of the
next position swaps for the two objects involved in the current event with their two neighbors in the
corresponding list. Thus, a constant number of events have to be updated in the event queue, which
requires O(log(nR)) time. Furthermore, a �ight plan update of a point causes a re-calculation of the
points of time of the next position swap in all d sorted lists for the point and all its wall faces with the
associated neighbors in the lists. Afterwards, the involved certi�cates are updated in the event queue.
This can be accomplished in O(log2(nR)) time. The upper bounds on the space requirement and the
total number of events are obvious. ¤

3.2 Handling an Update
In this subsection, we describe how an event, occurring at any point of time t, is handled (cf. Alg. 3.1,
line 5 �). As the �rst step the event queue is updated as explained in Subsection 3.1. All further steps
are performed to keep up one invariant consisting of the following conditions:

a) for each closed point pi(t) ∈ G(t) there is an open point pj(t) ∈ F(t) with r∗j (t) ≤ r∗i (t) in
C(pi(t), 4 · r∗i (t)) and

b) for each open point pi(t) ∈ F(t) there is no other open point pj(t) ∈ F(t) with r∗j (t) ≤ r∗i (t) in
C(pi(t), 2 · r∗i (t)).

We will show that, at each point of time t, if the invariant is satis�ed, then cost(F(t)) is at most
a constant factor larger than cost(FOpt(t)). Moreover, the asymmetric choice of condition a) and b)
enables our KDS to be stable. Thus, the goal is to restore the invariant each time an event occurs.
For simplicity of description, we say that a point pi(t) violates the invariant at a point of time t in the
following case: Either pi(t) is closed but there is no facility with radius smaller than or equal to ri(t)
in C(pi(t), 4 · r∗i (t)), or pi(t) is open but there is another facility with radius smaller than or equal to
ri(t) in C(pi(t), 2 · r∗i (t)).

Now, let us assume that the invariant is satis�ed by the time when an event e occurs. Then the
only possibility that the invariant gets violated is that e indicates that one point crosses a wall of
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another point. Thus, in case that an event is not a wall crossing, handling e is �nished after updating
the event queue. To detect wall crossings, we check if one of the objects involved in the considered
certi�cate is a point and if the other one is the face of a wall. Then we update both associated points,
the point that might cross the wall and the point whose wall might be crossed, in the range trees and
check if the �rst point really crosses a wall of the second point.

Next, we describe the steps that have to be performed in case that any point pj(t) crosses a
wall of any other point pi(t) at any time t. At �rst, we update the radius r∗i (t) = 2k∗ , such that
k∗ = k0 +dlog(4

√
d)e and k0 is the minimum integer k with log(

minpj∈P fj

n·maxpj∈P dj
) ≤ k ≤ log(

maxpj∈P fj

minpj∈P dj
), for

which weight(C(pi(t), 2k0)) ≥ 2−k0 holds. Note that k0 can be found by performing a binary search on
its O(log(nR)) possible values, where each step of the binary search requires only one range query on
both T1 and T2. Afterwards, we test if pi(t) violates the invariant by using a range query on T1. If this
is the case, we change the status of pi(t) (cf. Alg. 3.2). For simplicity of description, we assume that
the range trees are always up to date, i.e., at any time the position of each point stored in the range
trees is equal to its real current position. We will show in Section 4 that our KDS works as desired,
although the position of a point in the range tree can slightly deviate from its real current position.
As an e�ect of changing the radius or the status of one point, the invariant might be violated by many
other points (e.g., their open facility has been closed). In the following, we will show how to deal with
this problem.

Algorithm 3.1 KineticFL(P,M)
1: Mettu-Plaxton(P)
2: initialize event queue Q
3: while Q is not empty do
4: e← dequeue(Q)
5: update Q
6: if e indicates that pj(t) crosses a wall of pi(t) for any i, j then
7: update position of pi and pj in T1 and T2

8: update r∗i (t)← 2k∗ in T1 and T2

9: if pi(t) violates the invariant then
10: change status of pi(t)
11: if radius or status of pi(t) changed then
12: Restore(pi(t), k∗)

Algorithm 3.2 Restore(pe(t), k∗)

1: for k ← k∗ − 1 to blog(
maxpj∈P fj

minpj∈P dj
)c+ dlog(4

√
d)e do

2: de�ne cubical shells S1 := C(pe(t), 4 · 2k+1) and S2 := C(pe(t), 6 · 2k+1) \ S1

3: for each cubelet C with center mC and radius 2k in cubical shell S1 do
4: if ∃ facility with radius < 2k in C(mC , 3 · 2k) then
5: close all facilities with radius 2k in C
6: for each cubelet C with center mC and radius 2k in cubical shell S1 ∪ S2 do
7: if @ facility with radius ≤ 2k in C(mC , 3 · 2k) then
8: open one point with radius 2k in C (if existing)

Algorithm Restore. Suppose that, due to an event at any point of time t, the radius or the status
of a point pe(t) changed and its new radius is r∗e(t) = 2k∗ . First, we restore the invariant at all points
with radius 2k∗−1, to ensure that no point with radius less than or equal to 2k∗−1 violates the invariant.
Then we handle all points with radius 2k∗ that violates the invariant, then the ones with radius 2k∗+1,
. . . , up to the biggest possible radius. Now, we describe in general how the invariant is restored at all
the points with radius 2k that violate the invariant.
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We de�ne the two cubical shells S1 := C(pe(t), 4 ·2k+1) and S2 := C(pe(t), 6 ·2k+1)\S1. Both cubical
shells are divided into equally sized cubelets with radius 2k. Figure 1 (a) illustrates this decomposition
in the plane for k and the next iteration k + 1.

W (t)i,k+2

W (t)i,k+3

W (t)i,k+4

2
k+1

m

2
k

3 2.
k

(a) (b)

Figure 1: (a) Decomposition into cubelets. (b) Tested area.

To guarantee that no open point with radius 2k violates the invariant, we perform the following
test for each cubelet in S1: Let m be the center point of the considered cubelet. If there is a facility
with radius less than 2k in C(m, 3 · 2k), then close all facilities with radius 2k in C(m, 2k). Note that
there is at most one such facility. The considered area around a cubelet is illustrated in Figure 1 (b).

In order to ensure that no closed point with radius 2k violates the invariant neither, we test each
cubelet in S1 ∪ S2 one after the other, whether there exists a facility with radius less than or equal to
2k in C(m, 3 · 2k). If this is not the case, then we open a point with radius 2k in the cubelet (if there
is such a point). No matter, whether we opened a point or not, it is guaranteed, that for each closed
point pj(t) with r∗j (t) = 2k in the cubelet, there is a facility in C(pj(t), 4 · r∗j (t)).

4 Quality and Complexity of the Kinetic Data Structure
At �rst, we prove that the invariant is satis�ed each time our KDS has handled an update. Afterwards,
this fact is used to show that our KDS maintains, at any point of time t, a set of facilities F(t) such
that cost(F(t)) = O(cost(FOpt(t))). Finally, we analyze the complexity.

Maintenance of the Invariant. The di�culty in proving the correctness of maintaining the invari-
ant is that both range trees contain out-dated information. It is guaranteed that the radius of each
point stored in the range trees is equal to its current special radius, but this is not true for the position.
More precisely, at any time the coordinates of each point stored in the range trees are determined by
its position at the latest event it was involved in. Nevertheless, we will prove that our algorithm works
as desired. For any point of time t and any pi(t) ∈ P(t), let pT

i (t) be the position of pi stored in the
range trees at time t. The following claim shows that, at any time, every point is stored in the correct
range with respect to the walls of all other points.

Claim 4.1 Let pi, pj ∈ P, let k be an integer in {dlog(
minpj∈P fj

n·maxpj∈P dj
)e+dlog(4

√
d)e, dlog(

minpj∈P fj

n·maxpj∈P dj
)e+

1+dlog(4
√

d)e, . . . , blog(
maxpj∈P fj

minpj∈P dj
)c+dlog(4

√
d)e}, and let t be any point of time between two successive

events which involve pi and pj. If and only if we have pT
j (t) ∈ C(pT

i (t), 2k), then pj(t) ∈ C(pi(t), 2k) is
true as well.
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Proof: Let t1 < t be the latest point of time when pi and pj have been involved in one event.
Furthermore, pT

j (t) ∈ C(pT
i (t), 2k) implies that we have updated pi and pj at time t1, such that

pj(t1) ∈ C(pi(t1), 2k) and pT
j (t1) ∈ C(pT

i (t1), 2k). Now let us assume that we have pT
j (t) ∈ C(pT

i (t), 2k)
but pj(t) /∈ C(pi(t), 2k). Thus, there must be a point of time t2 with t1 < t2 < t when the point pj(t2)
crosses the wall Wi,k(t2). Then t1 could not be the latest point of time when pi and pj have been
involved in one event, a contradiction. Analogously, we can show that pT

j (t) /∈ C(pT
i (t), 2k) implies

pj(t) /∈ C(pi(t), 2k). ¤
Next, we prove that the invariant is satis�ed as long as algorithm KineticFL does not call algo-

rithm Restore.

Claim 4.2 The invariant is satis�ed after the �rst step of algorithm KineticFL.

Proof: For each point pi ∈ P, we have pT
i (t0) = pi(t0). Since algorithm Mettu-Plaxton treats

the points in ascending order according to their radii and opens a point pi(t0) with radius r∗i (t0) if
there is no other facility in C(pi(t0), 2 · r∗i (t0)), no facility violates the invariant.

Furthermore, algorithm Mettu-Plaxton does not open a point pi(t0) with radius r∗i (t0) if and
only if there is another facility in C(pi(t0), 2 ·r∗i (t0)) ⊆ C(pi(t0), 4 ·r∗i (t0)). Because this facility has been
treated earlier than pi(t0), its radius is less than or equal to r∗i (t0). Thus, there exists a facility with
radius less than or equal to r∗i (t0) in C(pi(t0), 4 · r∗i (t0)). Hence, no closed point violates the invariant.
¤

Claim 4.3 Let e be any event such that algorithm KineticFL does not change the radius or the status
of any point. If the invariant is satis�ed before e, then it holds after e as well.

Proof: We have to consider two cases. In the �rst case no point crosses a wall of another point. This
implies that no radius changes its value, so that the invariant is valid. Furthermore, our algorithm
does not change the radius or the status of any point, so that the claim holds.

Let t be the point of time when event e occurs. Then, in the second case, we have that a wall Wi,k(t)
of a point pi(t) is crossed by another point pj(t), but our algorithm does not change the radius or the
status of pi(t). It follows that pi(t) does not violate the invariant because otherwise our algorithm
would have changed its status. Due to the fact that pi(t) is unchanged and only the wall Wi,k(t) is
crossed at time t, no point in P(t)\{pi(t)} violates the invariant. ¤

The following claims show that the invariant is restored after each call of algorithm Restore.

Claim 4.4 Let pe(t) be a point whose radius or status changed due to an event e. Let r∗e(t) = 2k∗ be
the updated radius of pe(t). If no point with radius less than or equal to 2k∗−2 violates the invariant
before e, then this holds after e as well.

Proof: Due to the de�nition of the special radii and the fact that only one point has crossed one wall
of pe(t), the radius of pe has been at least 2k∗−1 before e. While processing event e, we only change
the status of points with radius larger than or equal to 2k∗−1. These status changes cannot e�ect the
invariant at points with radius less than or equal to 2k∗−2. Thus, the claim follows. ¤

Claim 4.5 Let pe(t) be a point whose radius or status changed due to an event e. Let r∗e(t) = 2k∗

be the updated radius of pe(t). If the invariant is satis�ed before e and no open point with radius less
than or equal to 2`−1 violates the invariant before running the outer for-loop of algorithm Restore
for k = `, where k∗ − 1 ≤ ` ≤ blog(

maxpj∈P fj

minpj∈P dj
)c + dlog(4

√
d)e, then, after running this for-loop, no

open point with radius 2` violates the invariant.

Proof: The proof is by contradiction. Let us assume that after running the outer for-loop of
algorithm Restore for k = ` there is an open point pi(t) with radius r∗i (t) = 2` that has another open
point pj(t) with radius r∗j (t) ≤ r∗i (t) in C(pi(t), 2 · r∗i (t)).
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Note that pe is updated in the range trees at time t, so that pT
e (t) = pe(t). Due to Claim 4.1, we

know that pi(t) ∈ S1 if and only if pT
i (t) ∈ S1. Furthermore, due to Claim 4.1, if we have pi(t) ∈ S2,

then we also know that pT
i (t) /∈ S1. Keeping this in mind, we have to consider the following �ve

possible combinations for pi(t) and pT
i (t):

i) pi(t) ∈ S1 and also pT
i (t) ∈ S1

ii) pi(t) ∈ S2 and also pT
i (t) ∈ S2

iii) pi(t) ∈ S2, but pT
i (t) /∈ S1 ∪ S2

iv) pi(t) /∈ S1 ∪ S2 and also pT
i (t) /∈ S1 ∪ S2

v) pi(t) /∈ S1 ∪ S2, but pT
i (t) ∈ S1 ∪ S2

Cases i), ii), and v). Subcase r∗j (t) < r∗i (t): Due to the fact that r∗j (t) < 2`, we have opened pj

before running the outer for-loop for k = `. It follows that pT
i (t) ∈ C(m, 2`) and pT

j (t) /∈ C(m, 3 · 2`)
for one center m of a considered cubelet, because otherwise we either would have closed pi(t) or would
not have opened pi(t). As a consequence, pT

j (t) /∈ C(pT
i (t), 2`+1) = C(pT

i (t), 2 · r∗i (t)). Now, due to
Claim 4.1, we have pj(t) /∈ C(pi(t), 2 · r∗i (t)), which is a contradiction.

Subcase r∗j (t) = r∗i (t): We have to consider the case that neither pi nor pj is opened while running
the outer for-loop for k = ` and the case that at least one of pi and pj is opened during this for-loop.
In the �rst case, it follows that pi and pj must have been open before running the outer for-loop for
k = `. As a consequence, both points have been open before e or one point is pe. Then either the
invariant was violated before e or changing the status of pe violated the invariant, a contradiction. In
the latter case, we have opened at least one point of pi and pj while running the outer for-loop for
k = `. W.l.o.g., let us assume that we have opened pi before we have opened pj . Then we must have
that pT

j (t) ∈ C(m, 2`) and pT
i (t) /∈ C(m, 3 · 2`) for one center m of a considered cubelet. It follows that

pT
j (t) /∈ C(pT

i (t), 2`+1) = C(pT
i (t), 2 · r∗i (t)). Due to Claim 4.1, we have pj(t) /∈ C(pi(t), 2 · r∗i (t)), which

is a contradiction.

Cases iii) and iv). Subcase r∗j (t) < r∗i (t): Due to the fact that r∗j (t) < 2`, we have opened pj before
running the outer for-loop for k = `. Furthermore, it follows from pT

i (t) /∈ S1 ∪ S2 that we must have
opened pi before running the outer for-loop for k = ` as well. Hence, we have that both pi and pj

have been open before running this for-loop. Consequently, the invariant must have been violated at
point pj(t) with r∗j (t) ≤ 2`−1 before running the outer for-loop for k = `, a contradiction.

Subcase r∗j (t) = r∗i (t): Here we can use the same argumentation as for cases i), ii), and v) in subcase
r∗j (t) = r∗i (t) with the modi�cation that we know that pi has been opened before running the outer
for-loop for k = `. The reason is that pT

i (t) /∈ S1 ∪ S2, so that we do not change its status during the
running of this for-loop. ¤

Claim 4.6 Let pe(t) be a point whose radius or status changed due to an event e. Let r∗e(t) = 2k∗ be
the updated radius of pe(t). If the invariant is satis�ed before e and no closed point with radius less
than or equal to 2`−1 violates the invariant before running the outer for-loop of algorithm Restore
for k = `, where k∗ − 1 ≤ ` ≤ blog(

maxpj∈P fj

minpj∈P dj
)c + dlog(4

√
d)e, then, after running this for-loop, no

closed point with radius 2` violates the invariant.

Proof: The proof is by contradiction. Let us assume that after running the outer for-loop of
algorithm Restore for k = ` there is a closed point pi(t) with radius r∗i (t) = 2` that has no open
point with radius less than or equal to r∗i (t) in C(pi(t), 4 · r∗i (t)). We have to consider the same �ve
cases as in the proof of Claim 4.5.
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Cases i), ii), and v). The assumption implies that pT
i (t) ∈ C(m, 2`) and there is an open point

pT
j (t) in C(m, 3 · 2`) for any center m of a considered cubelet, because otherwise we would have opened

a point with radius 2` in C(m, 2`). As a consequence, pT
j (t) ∈ C(pT

i (t), 2`+2) = C(pT
i (t), 4 · r∗i (t)). Now,

due to Claim 4.1, we have pj(t) ∈ C(pi(t), 4 · r∗i (t)), which is a contradiction.

Cases iii) and iv). Let t′ be any point of time between the occurrence of e and the latest event
before. Then there was an open point pj(t′) with radius less than or equal to r∗i (t) in C(pi(t′), 4 · r∗i (t′))
because otherwise the invariant was violated before e. Due to Claim 4.1, pT

j (t′) ∈ C(pT
i (t′), 4 · r∗i (t′)) is

also true. From pT
i (t) /∈ S1∪S2 = C(pT

e (t), 6 ·2`+1) follows that pT
e (t) /∈ C(pT

i (t), 4 ·2`), so that pe 6= pj .
Due to pi 6= pe, pj 6= pe, and pT

j (t′) ∈ C(pT
i (t′), 4 · r∗i (t′)), we have that pT

j (t) ∈ C(pT
i (t), 4 · r∗i (t)) is also

true. Thus, if pi violates the invariant after e, then we must have closed pj during processing e. We
only close points with radius less than or equal to r∗i (t) in S1. Since pi(t) /∈ S1 ∪S2 and pj(t) ∈ S1, we
get pT

j (t) /∈ C(pT
i (t), 2 · 2`+1) = C(pT

i (t), 4 · r∗i (t)), a contradiction. ¤
Now, we can combine the obtained results to the following lemma:

Lemma 4.1 The invariant is satis�ed after algorithm KineticFL has handled an event.

Proof: Due to Claim 4.2 and Claim 4.3, the invariant is satis�ed as long as algorithm KineticFL
does not call algorithm Restore. Now, we show that this is also true after processing algorithm
Restore.

Let pe(t) be the point whose radius or status changed due to an event e, and let r∗e(t) = 2k∗ be its
updated radius. Because of the precondition given above and Claim 4.4 the lemma is true for all open
points pi(t) with radius ri(t)∗ = 2` where ` ≤ k∗−2, and because of Claim 4.5 it follows for ` ≥ k∗−2.
Hence, it is true for all open points.

A similar argumentation holds for the closed points. Because of the precondition given above and
Claim 4.4 the lemma follows for all closed points pi(t) with radius ri(t)∗ = 2` where ` ≤ k∗ − 2, and
because of Claim 4.6 it follows for ` ≥ k∗ − 2. Thus, it is true for all closed points. ¤

The Special Radii. Similar to the de�nition of cubes, for any point pi(t) ∈ P(t), we de�ne B(pi(t), r)
to be the ball with center pi(t) and radius r. Given such a ball B(pi(t), r), we let weight(B(pi(t), r))
denote the sum of the demands of all the points in P(t) that lie in the ball B(pi(t), r). Now, we can
prove that, at any point of time t, the special radius r∗i (t) of any point pi(t) ∈ P(t) is a constant factor
approximation for the value ri(t) that is used in [33] and satis�es

∑

pj(t)∈B(pi(t),ri(t))

dj · (ri(t)−D(pi(t), pj(t))) = fi .

For the uniform facility location problem, the authors in [9] gave an appropriate lower and upper
bound for the value ri(t) and showed how to approximate ri(t) by counting the number of points in a
certain distance of pi(t). We generalize their two results to the non-uniform case:

Lemma 4.2 For any point of time t and for each pi(t) ∈ P(t), we have

fi

weight(B(pi(t), ri(t)))
≤ ri(t) ≤ 2 · fi

weight(B(pi(t),
ri(t)

2 ))
.

Proof: From the de�nition of ri(t) follows
∑

pj(t)∈B(pi(t),ri(t))
dj · ri(t) ≥ fi, so that

ri(t) ≥ fi∑
pj(t)∈B(pi(t),ri(t))

dj
=

fi

weight(B(pi(t), ri(t)))
.
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Furthermore, we get

fi =
∑

pj(t)∈B(pi(t),ri(t))

dj · (ri(t)−D(pi(t), pj(t)))

≥
∑

pj(t)∈B(pi(t),
ri(t)

2
)

dj · (ri(t)−D(pi(t), pj(t)))

≥ ri(t)
2
·

∑

pj(t)∈B(pi(t),
ri(t)

2
)

dj =
ri(t)

2
· weight(B(pi(t), ri(t)/2)) ,

which completes the proof. ¤

Lemma 4.3 For any point of time t, let k1 be the minimum integer k with dlog(
minpj∈P fj

n·maxpj∈P dj
)e ≤ k ≤

blog(
maxpj∈P fj

minpj∈P dj
)c, such that

weight(B(pi(t), 2k)) ≥ fi · 2−k .

Then 1
2 · ri(t) ≤ 2k1 ≤ 2 · ri(t) holds.

Proof: Due to the choice of k1, we have weight(B(pi(t), 2k1−1)) < fi · 2−(k1−1). It follows that, for
any ri(t) < 2k1−1, we get

weight(B(pi(t), ri(t))) ≤ weight(B(pi(t), 2k1−1)) < fi · 2−(k1−1) < fi · 1
ri(t)

.

Now, we have ri(t) < fi

weight(B(pi(t),ri(t)))
, which is a contradiction to Lemma 4.2. Hence, ri(t) ≥ 2k1−1

must be true, which proves the second inequality.
Furthermore, for any ri(t) > 2k1+1, we have

weight(B(pi(t), ri(t)/2)) ≥ weight(B(pi(t), 2k1)) ≥ fi · 2−k1 > fi · 2
ri(t)

.

In this case, it follows that ri(t) > 2fi

weight(B(pi(t),ri(t)/2)) , which is again a contradiction to Lemma 4.2.
Thus, we have ri(t) ≤ 2k1+1, which proves the �rst inequality. ¤

Our algorithm uses the approach of [9], but we approximate the sum of the demands of all the
points in a distance 2k, for an integer k, by a cube with radius 2k. This leads to the following result:

Lemma 4.4 For any point of time t, let k0 be the minimum integer k with dlog(
minpj∈P fj

n·maxpj∈P dj
)e ≤ k ≤

blog(
maxpj∈P fj

minpj∈P dj
)c, such that weight(C(pi(t), 2k)) ≥ 2−k. Then 1

4
√

d
· ri(t) ≤ 2k0 ≤ 2 · ri(t) holds.

Proof: Let k1 be the minimum integer k with dlog(
minpj∈P fj

n·maxpj∈P dj
)e ≤ k ≤ blog(

maxpj∈P fj

minpj∈P dj
)c, such that

weight(B(pi(t), 2k)) ≥ 2−k. Then the radius of C(pi(t), 2k0) is at most 2k1 , since each point in P(t) that
is located in B(pi(t), 2k1) is also located in C(pi(t), 2k1), so that weight(C(pi(t), 2k1)) ≥ 2−k1 . Further-
more, the radius of C(pi(t), 2k0) is larger than 1√

d
· 2k1−1. The reason is that weight(B(pi(t), 2k1−1)) <

2−(k1−1) and weight(C(pi(t), 1√
d
· 2k1−1)) ≤ weight(B(pi(t), 2k1−1)), so that

weight(C(pi(t), 2k1−1−log(
√

d))) = weight(C(pi(t),
1√
d
· 2k1−1)) < 2−(k1−1) < 2−(k1−1−log(

√
d)).

Now, due to the fact that 2k0 > 1√
d
· 2k1−1 and Lemma 4.3, the lemma follows. The maximum and

minimum radius of C(pi(t), 2k0) is illustrated in Figure 2. ¤

Due to Lemma 4.4, we have 2− log(4
√

d) · ri(t) ≤ 2k0 ≤ 2 · ri(t). Therefore, to get ri(t) ≤ r∗i (t), we
set r∗i (t) = 2k∗ = 2k0+dlog(4

√
d)e). This implies ri(t) ≤ r∗i (t) ≤ 23+dlog(

√
d)e · ri(t).
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Figure 2: Maximum and minimum radius of C(pi(t), 2k0).

Lemma 4.5 The KDS for the facility location problem for an arbitrary but �xed dimension d main-
tains, at any point of time t, a subset F(t) ⊆ P(t) such that

cost(F(t)) ≤ (64d + 1) · cost(FOpt(t)) .

Proof: For each point pi(t) ∈ P(t), there is a facility pj(t) ∈ F(t) with radius r∗j (t) ≤ r∗i (t)

in C(pi(t), 4 · r∗i (t)). Furthermore, we know that ri(t) ≤ r∗i (t) ≤ 23+dlog(
√

d)e · ri(t). Thus, we get
D(pi(t), pj(t)) ≤

√
d · 4 · r∗i (t) ≤

√
d · 4 · 23+dlog(

√
d)e · ri(t) ≤ 64d · ri(t). Now, the lemma follows from

the analysis in [33]. Details can be found in the appendix. ¤

Complexity. In the remainder of this section, we analyze our KDS in terms of its complexity. Due
to Lemma 3.1, we have already proven that our KDS is compact and local. The following lemma shows
that the requirement for responsiveness is also ful�lled.

Lemma 4.6 Each event requires O(log(nR)) status changes and O(logd+1(n) · log(nR)) update time.

Proof: Due to Lemma 3.1, the time to update the event queue is O(log(nR)). In the case that the
event does not indicate that one point crosses a wall of another point, we have already �nished process-
ing the event. Otherwise, we have to update two points in the range trees and the radius of one point.
Because we use binary search for updating the radius, both operations requireO(log log(nR)·logd+1(n))
time. The time required to check, whether a point violates the invariant or not, is O(logd+1(n)). To
change the status of one point, we have to perform one remove and one insert operation on the range
trees. This can be done in O(logd+1(n)) time. Next we examine the time needed for algorithm Re-
store. We consider the running time resulting for restoring the invariant at points with radius 2k.
The number of cubelets with radius 2k in C(pe(t), 6 · 2k+1) is 12d. The query of open or closed points
for one cubelet can be answered by T1 and T2 in time O(logd+1(n)). Afterwards, there has to be at
most one point inserted and deleted in T1 and T2. This requires O(logd+1(n)) time. By summation
over all radii, we get a total running time of O(log(nR) · 12d · logd+1(n)) = O(logd+1(n) · log(nR)).

There can exist at most one facility with radius 2k in a cubelet with radius 2k, because otherwise
at least one facility would violate the invariant. Hence, the number of facilities with radius 2k that are
closed while running algorithm Restore is constant. Furthermore, we open at most one facility in
each cubelet, so that the number of opened facilities with radius 2k is also constant. Due to the fact
that we handle O(log(nR)) radii, there are O(log(nR)) status changes per event. ¤

Due to Lemma 3.1 and Lemma 4.6, the total processing time is O(n2 logd+1(n) · log3(nR)). Thus,
we get the following result:

Theorem 4.1 Let P be a set of n independently moving points in Rd, where d is a constant. Then
there is a KDS for the facility location problem that maintains, at any point of time t, a set F(t) ⊆ P(t),
such that cost(F(t)) ≤ (64d + 1) · cost(FOpt(t)). The KDS has a space requirement of O(n(logd(n) +
log(nR))), where R = maxpi∈P fi ·maxpi∈P di

minpi∈P fi ·minpi∈P di
. Each update operation requires O(log(nR)) status changes

and O(logd+1(n) · log(nR)) time. In the case that each trajectory can be described by a bounded de-
gree polynomial, the total number of updates is O(n2 log2(nR)), which results in a total processing
time of O(n2 logd+1(n) · log3(nR)). A �ight plan update involves O(log(nR)) certi�cates and requires
O(log2(nR)) time.
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5 Conclusion and Future Work
In this paper, we initiated the study on the kinetic facility location problem. In particular, we proposed
a KDS that maintains a subset of the moving input points as facilities such that, at any point of time,
the associated total cost is at most a constant factor larger than the current optimal cost. We showed
that our KDS is compact, local, and responsive. We also consider our algorithm to be e�cient, although
we cannot prove this in the formal sense of KDS, because it is hard to lower bound the number of
mandatory events in a non-trivial way. We did not focus on �ne-tuning the approximation factor and
leave this as furure work.

Due to the local structure of the solution and the motivation from mobile ad-hoc networks, it might
be worthwhile to extend our results to a dynamic or distributed setting as well. Future work in the
area of kinetic facility location problems could include to consider additional opening cost that arises
at the moment when a point changes its status from client to facility. Here we point out that in our
scenario the opening cost per event would be already bounded, because we open at most a logarithmic
number of facilities per event.
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A Proof of Lemma 4.5
The following analysis is basically the same as in [33]. Only a few adjustments to our scenario have
been made.

Claim A.1 For any point pi(t) ∈ P(t), there exists a point pj(t) ∈ F(t), such that r∗j (t) ≤ r∗i (t) and
D(pi(t), pj(t)) ≤ 64d · ri(t).

Proof: Since, for each point pi(t) ∈ P(t), there is a facility pj(t) ∈ F(t) with radius r∗j (t) ≤ r∗i (t) in
C(pi(t), 4 · r∗i (t)), we get D(pi(t), pj(t)) ≤

√
d · 4 · r∗i (t). Now, due to Lemma 4.4 and the de�nition of

r∗i (t), we have D(pi(t), pj(t)) ≤
√

d · 4 · 23+dlog(
√

d)e · ri(t) ≤ 64d · ri(t). ¤

Claim A.2 Let pi(t) and pj(t) be distinct points in F(t). Then D(pi(t), pj(t)) > 2 ·max{ri(t), rj(t)}.
Proof: W.l.o.g., r∗j (t) ≤ r∗i (t). From the fact that the invariant is always restored after an event
occurred, it follows that pj(t) /∈ C(pi(t), 2 · r∗i (t)). Thus, we have D(pi(t), pj(t)) > 2 · r∗i (t) ≥ 2 · ri(t)
and D(pi(t), pj(t)) > 2 · r∗i (t) ≥ 2 · r∗j (t) ≥ 2 · rj(t). ¤

For any point pj(t) ∈ P(t) and an arbitrary set of facilities X (t) ⊆ P(t), let

charge(pj(t),X (t)) = D(pj(t),X (t)) +
∑

pi(t)∈X (t)

max{0, ri(t)−D(pi(t), pj(t))} .

Claim A.3 For an arbitrary set of facilities X (t) ⊆ P(t), we get
∑

pj(t)∈P(t)

charge(pj(t),X (t)) · dj = cost(X (t)) .

Proof: We get
∑

pj(t)∈P(t)

charge(pj(t),X (t)) · dj

=
∑

pi(t)∈X (t)

∑

pj(t)∈B(pi(t),ri(t))

(ri(t)−D(pi(t), pj(t))) · dj +
∑

pj(t)∈P(t)

D(pj(t),X (t)) · dj

=
∑

pi(t)∈X (t)

fi +
∑

pj(t)∈P(t)

D(pj(t),X (t)) · dj .

¤

Claim A.4 Let pj(t) ∈ P(t) be a point, let X (t) ⊆ P(t) an arbitrary set of facilities, and let pi(t) ∈
X (t). If D(pj(t), pi(t)) = D(pj(t),X (t)) then charge(pj(t),X (t)) ≥ max{ri(t), D(pj(t), pi(t))}.
Proof: If pj(t) /∈ B(pi(t), ri(t)) then charge(pj(t),X (t)) ≥ D(pj(t), pi(t)) > ri(t). Otherwise,
charge(pj(t),X (t)) ≥ (ri(t)−D(pj(t), pi(t))) + D(pj(t), pi(t)) = ri(t) ≥ D(pj(t), pi(t)). ¤

Claim A.5 Let pj(t) ∈ P(t) be a point and let pi(t) ∈ F(t). If pj(t) ∈ B(pi(t), ri(t)), then

charge(pj(t),F(t)) ≤ ri(t) .

Proof: By Claim A.2, there is no point p`(t) ∈ F(t) such that i 6= ` and pj(t) ∈ B(p`(t), r`(t)). The
lemma now follows from the de�nition of charge(pj(t),F(t)), since D(pj(t),F(t)) ≤ D(pj(t), pi(t)). ¤

Claim A.6 Let pj(t) ∈ P(t) be a point and let pi(t) ∈ F(t). If pj(t) /∈ B(pi(t), ri(t)), then

charge(pj(t),F(t)) ≤ D(pj(t), pi(t)) .
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Proof: The lemma follows immediately unless there is a point p`(t) ∈ F(t) such that pj(t) ∈
B(p`(t), r`(t)). If such a point p`(t) exists, then Claims A.2 and A.5 imply D(pi(t), p`(t)) > 2 ·
max{ri(t), r`(t)} and charge(pj(t),F(t)) ≤ r`(t), respectively. The lemma now follows since

D(pj(t), pi(t)) ≥ D(pi(t), p`(t))−D(pj(t), p`(t)) > 2r`(t)− r`(t) = r`(t) .

¤

Claim A.7 For any point pj(t) ∈ P(t) and an arbitrary set of facilities X (t) ⊆ P(t),

charge(pj(t),F(t)) ≤ (64d + 1) · charge(pj(t),X (t)) .

Proof: Let pi(t) be some point in X (t) such that D(pj(t), pi(t)) = D(pj(t),X (t)). By Claim A.1,
there exists a point p`(t) ∈ F(t) such that r∗` (t) ≤ r∗i (t) and D(pi(t), p`(t)) ≤ 64d · ri(t).

If pj(t) ∈ B(p`(t), r`(t)), then charge(pj(t),F(t)) ≤ r`(t) by Claim A.5. The lemma follows since
r`(t) ≤ r∗` (t) ≤ r∗i (t) ≤

√
d·4·23+dlog(

√
d)e ·ri(t) ≤ 64d·ri(t) and Claim A.4 implies charge(pj(t),X (t)) ≥

ri(t).
If pj(t) /∈ B(p`(t), r`(t)), then charge(pj(t),F(t)) ≤ D(pj(t), p`(t)) by Claim A.6. Thus,

charge(pj(t),F(t)) ≤ D(pj(t), pi(t)) + D(pi(t), p`(t)) ≤ D(pj(t), pi(t)) + 64d · ri(t) .

The lemma now follows by Claim A.4, since the ratio of D(pj(t), pi(t)) + 64d · ri(t) to the maximum
of ri(t) and D(pj(t), pi(t)) is at most 64d + 1. ¤

Due to Claims A.3 and A.7, we have cost(F(t)) ≤ (64d + 1) · cost(X (t)) for an arbitrary set of
facilities X (t) ⊆ P(t). Thus, the approximation factor is also true for an optimal set of facilities
FOpt(t), which completes the lemma.
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