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Abstract. We present PadMig, a library for thread migration and check-
pointing in Java. Its language specification is based on standard Java 5
annotations such that no additional keywords are used, which eases the
developers’ work as they can keep using their favorite IDE and can pro-
duce both a migratable and a non-migratable version of their program
out of the same source code. Java source code with PadMig specific
annotations is transformed into migratable Java code by the PadMig
source-to-source compiler migc.

In this paper we present the PadMig Language Specification and its
production quality compiler. We focus especially on the implementation
of the unfolding technique employed by the compiler, and give some
evaluation concerning code growth and migration overhead.

1 Introduction

In distributed, volunteer-based computing environments, such as our web com-
puting library PUB-Web [1,12], it is necessary to migrate threads of lengthy
calculations at runtime to other hosts in order to meet execution deadlines be-
cause the donated computing power continually fluctuates and hosts may even
become unavailable. Furthermore, it is desirable to regularly create checkpoints
of the execution state, so that a certain state of a thread can be restored in case
of a system crash rather than restarting all the calculations from the beginning.

There are three ways to migrate threads in Java: modification of the Java
Virtual Machine (VM) [6], bytecode transformations [13,17], and sourcecode
transformations [14, 4]. Modifying the Java VM is out of the question because
everybody would have to replace his installation of the original Java VM with
one from a third party, just to run a migratable Java program. Approaches of
this kind do not only have limited success due to their installation overhead, but
also because of trust matters: people would need to trust that a third party VM
does not have any security defects. Additionally, from the developers’ point of
view, this approach would result in a lot of maintenance work to adapt all future
releases and updates of Sun’s VM. An obvious alternative to modifying Sun’s
VM is of course to develop an own VM, but this results in even more implemen-
tation work. A quite well-known approach of this kind is the Jikes Research VM,



which provides—among other features—thread migration techniques [2]; but al-
though a lot of man-power has been spent into this project, it is not suitable for
production use.

The bytecode transformation approach is also less suitable in our case be-
cause we would need to re-synthesize high-level constructs such as loops or try-
catch-finally blocks for our translation approach. Additionally, a bytecode
transformer should be able to deal with all possible bytecode constructs, not
only those found in well-shaped javac output, which means additional effort for
the development of such a compiler.

Thus, this paper deals with the sourcecode transformation approach. There
are two ways to accomplish this: using code unfolding [14] or an artificial pro-
gram counter [4]. Using the former approach, nested loops and branches have
to be unfolded, whereas additional code fragments have to be inserted for each
statement to check whether or not the statement has to be skipped in the lat-
ter approach. Obviously, unfolding needs only be done if there are migratory
sub-statements; similarly, successive statements to be skipped can be grouped
in case there are no migratory statements in between.

During the development of our web computing library PUB-Web, we first
employed a very promising prototype implementation [5] of the unfolding tech-
nique, called JavaGo, which extends the Java programming language with three
keywords: migrations are performed using the keyword go (passing a filename
instead of a hostname as parameter creates a backup copy of the execution
state). All methods, inside which a migration may take place, have to be de-
clared migratory. The depth, up to which the call stack will be migrated, can
be bounded using the undock statement.

The translation of this extended language into Java sourcecode is done using
the JavaGo compiler jgoc. Migratable programs have a special main method and
are launched via a wrapper class. In order to continue the execution of a migrat-
able program, an instance of a migration server has to run on the destination
host.

But, unfortunately, this prototype implementation was not fully compatible
with the Java RMI standard and could also not be extended to support Java
5 due to design issues. Thus and because of the following two more reasons,
we decided to start from scratch with our own implementation, the Paderborn
Thread Migration and Checkpointing (PadMig) library [8]:

— Using annotations instead of additional keywords, we can stick to the Java
standard instead of deriving a new programming language. As a side effect,
this allows developers to keep using their favorite IDEs without any draw-
backs. Furthermore, we are able to design PadMig such that developers do
not need to maintain two versions if they like to have a non-migratable and
a migratable version of their code — they can simply skip the intermediate
compilation step with our migc compiler to obtain a non-migratable version
of their code.

— The prototype implementation of the JavaGo compiler was more or less a
quick-hack written in Objective Caml [3], which was terribly slow, did not



produce useful error messages, was hard to debug and not available for all
important platforms. For portability reasons we based our new implemen-
tation solely on tools in Java; in particular, we use the Java transformation
framework Spoon [15,10,7], which provides a complete model of the ab-
stract syntax tree where any element can be accessed both for reading and
modification.

The PadMig API consists of special functions to initiate a migration to an-
other machine or to save a checkpoint into a file. All methods, inside which
a migration can occur or a checkpoint is created, need to be annotated. The
PadMig compiler then transforms this code into migratable code. As our imple-
mentation does not modify the Java language, the original, non-migratable code
is fully functional Java code, which just produces a warning rather than actually
migrating.

The remainder of this paper is organized as follows: in Section 2 we describe
the language specification of PadMig; in the following sections we provide the
technical background and give insight into the translation concepts; finally, we
evaluate our technique in Section 5.

2 The PadMig Language Specification

In order to migrate the calling thread or to create a checkpoint, migration points
have to be inserted into a program. Only there — at statements consisting of
a call to the migrate() or checkpoint () method of the library class padmig.
PadMig — the calling thread is migrated to a remote host or a checkpoint of the
calling thread is created, respectively. In particular, the two methods have the
following signatures:

public static void migrate(
java.net.URL migrationServer)
throws padmig.MigrationException;
public static void checkpoint(
java.io.File backupFile)
throws padmig.MigrationException;

When a checkpoint is generated, the execution continues locally. In case the
migration or checkpointing fails, a MigrationException will be thrown.

In order to allow migrations or checkpoints inside a method, either directly
by calling the migrate() or checkpoint() method, or transitively by calling
some other migratable method, the particular method has to be annotated with
padmig.Migratory. In some cases, it is desirable to migrate only a part of the
call stack; in PUB-Web, for example, only the user program, but not the PUB-
Web VM should be migated. The method, which forms the bottom element of
the call stack to be migrated has to be annotated with padmig.Undock instead
of Migratory (cf. Fig. 1). According integrity checks are performed at compile
time: migc stops with an error if a migratable method is called from an ordi-
nary method, i.e., a method which is neither migratable nor undockable. migc



also ensures that migratory annotations are consistent when inheriting from a
(possibly abstract) class or when implementing or inheriting interfaces.

@Migratory z() Migrated
. 90() Part of
Stack
@Migratory y()
@Undock x()
main()

Fig. 1. Tllustration of the migratory part of a call stack.

We distinguish two kinds of migrations: if a method annotated with Undock
has a return value, we call migrations on this call stack synchronous as the
local execution has to wait for the undocked method to return; otherwise, if
the Undock method has no return value, we call migrations on that call stack
asynchronous because the local execution can already continue with the next
statement after the call to the Undock method directly after the Undock method
has migrated.

As all local variables are migrated by default, it is necessary to mark the lo-
cals which cannot be migrated (because they are not serializable) or should not
be migrated (as they generate an unnecessary overhead). This can be done using
the padmig.DontMigrate Annotation. The PadMig compiler does not explicitly
check for all possible kinds of side effects; however, the most prominent issues,
such as open files or sockets, are often implicitly detected, e.g., because file or
socket handles are not serializable. Note: In order to support, e.g., open socket
connections in a transparent way with respect to inheritance etc., it is neces-
sary to adapt the runtime environment appropriately by rewriting the according
classes using proxies, which is out of the scope of this work. User programs inside
PUB-Web are only allowed to open files for read access or to write output back
to the user’s peer via the PUB-Web API. Such open files or socket connections
are not migrated but reside in the PUB-Web VM; after a migration, the user
program needs to re-open files for read access or can continue to write output
to the user’s peer via the PUB-Web API.

The object whose method is to be migrated has to be serializable of course,
i.e.; it must implement the java.io.Serializable interface. The main class of
an application is also required to implement a special main method defined in
the padmig.Migratable interface:

public java.io.Serializable migratableMain(
java.io.Serializable[] args);



For interoperability reasons (see next chapter), the parameters and return
value of the main method can be any serializable object. Listing 1.1 shows an
example for a migratable program, which demonstrates all the languages fea-

tures.
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Listing 1.1. Example for a migratable program.

import
import
import

public
{

java.io.*;
java.net .*;
padmig. *;

class Example implements Migratable, Serializable

public boolean migrationNecessary () {
// evaluate situation here
return true;

public URL getMigrationTarget () {
try {

}
}

return new URL("pp://some.host:1234/
migration_server_name");
catch (MalformedURLException mue) { /* ... */ }

@Migratory
public int someMethod (int n) throws MigrationException

{

for (int i=n; i>=0; i--) {

// some complicated calculation here
@DontMigrate

File someFileHandle;

// complicated calculation continued

if (i % 10 == 0) {
PadMig.checkpoint (new File ("/path/checkpoint-"+n
+".bak"));
}

if (migrationNecessary()) {
PadMig.migrate (getMigrationTarget ());
}

@Undock

public int syncUndockMethod (int n) throws
MigrationException {
return 2 * someMethod (n);




39 @Undock
40 public void asyncUndockMethod (int n) throws
MigrationException {
41 // remote result output
42 System.out.println("the result is " + (2 *
someMethod(n))) ;
43 }
44
45 public Serializable migratableMain(Serializable[] args
) o
46 try {
a7 asyncUndockMethod (21) ;
48 System.out.println("thread has undocked");
49 // local result output
50 System.out.println("the result is " +
syncUndockMethod (23)) ;
51 } catch (MigrationException e) {
52 System.out.println("migration has failed");
53 e.printStackTrace () ;
54 }
55 return null;
56 }
57 }

3 Technical Background

In this section we give technical insight in how the PadMig compiler transforms
the annotated Java code into migratable standard Java code.

When migrating the calling thread, we need to save its current call stack and
an abstract representation of its program counter, transfer both to the remote
side, reconstruct the stack, and jump back into the code to the equivalent po-
sition. To provide the functionality of a program counter, the PadMig compiler
surrounds the original body of a migratory method with a switch statement,
whose cases are used as entry points to reenter the code after a migration; thus,
before every migratory invocation, the code generated by PadMig increases pro-
gram counter and the migratory invocation is put into a new case statement (cf.
Listing 1.2). If migratory expressions occur in loops or conditionals, an unfolding
technique needs to be applied, as described in detail in Section 4.

For each migratory method a method-specific subclass of padmig.lib.
StackFrame is generated, which stores all migratory locals and a symbolic pro-
gram counter. When the current call stack is to be saved, it is represented as
a list of instances of these stack frame classes. This list is created on demand
by throwing a special java.lang.Throwable, namely padmig.lib.SaveStack,
which holds the growing saved stack and has to be caught by every method and
passed on after adding its own stack frame. To restore the call stack on the re-
mote side, the corresponding stack frame is passed to each method on the stack



via a non-null additional parameter called __parentState (this parameter is
null during ordinary method invocations). The locals as well as the program
counter are then restored by generated code inserted at the beginning of each
method. A simplified example is provided in Listing 1.2.
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Listing 1.2. Simplified example of a generated method.

public void foo(String paraml, StackFrame __parentState)
throws SaveStack, MigrationException {
FooStackFrame __state = null;
int __entryPoint = 0;
// locals declarations here...
if (__parentState != null) {
__state = ((FooStackFrame) (__parentState.child));
__entryPoint = __state.entryPoint;
// restore locals here...
}
try {
switch (__entryPoint) {
case 0
// original method body before migration here...
__entryPoint = 1;
throw new DoMigration(getMigrationDst ());
case 1
// original method body after migration here...
//
// original method body before checkpointing here

__entryPoint = 2;
throw new DoCheckpoint (getBackupFile ());
case 2
// original method body after checkpointing here

}

} catch (SaveStack __stack) {
__state = new FooStackFrame () ;
__state.self = this;
__state.entryPoint = __entryPoint;
// save locals here...
__state.child = __stack.bottomOfStack;
__stack.bottom0fStack = __state;
throw __stack;

Once you have compiled both your migratable program with the PadMig
compiler mige and and the resulting code with the Java compiler javac, you are
ready to run your migratable program — either standalone or as part of another
application.




In order to execute a migratable program stand-alone, you need to run a mi-
gration server padmig.standalone.Server on every possible migration target
and start the migratable program via padmig.standalone.Client, which is a
wrapper around the migratable main method. As the internal communication of
PadMig is performed via the Paderborn Remote Method Invocation (PadRMI)
library [9], the library padrmi.jar has to be included in the classpath. Java
properties specify the IP address, port, etc. of the local machine and the code-
base: either on a web server or file server as a http: or file: protocol URL or
a pp: protocol URL pointing to one of the migration servers. Note that multiple
cooperating migration servers must all point to the same codebase. Handlers for
the PadRMI protocol (denoted by pp: in URLs) have to be installed into all
participating JVMs as well via the Java Protocol Handler mechanism.

Instead of running your migratable application standalone, you can also in-
tegrate it into other Java applications — like we integrated it into PUB-Web
— using the PadMig interoperability interface. In order to enable your applica-
tion to accept incoming thread migrations, you need to start the PadRMI dae-
mon and register a padmig.iop.Service, for example padmig.iop.DefaultSer
viceImpl:

padrmi.Server.startDefaultServer();

padrmi.Server.getDefaultServer () .add0bject(
padmig.lib.PadMigLib.PADRMI_SERVICE_NAME,
new padmig.iop.DefaultServiceImpl(),
padmig.iop.Service.class, null, null);

Furthermore, you will probably want to implement the padmig.iop.
MigrationListener interface and register it with the DefaultService
Impl.addMigrationListener () method in order to obtain references to incom-
ing migratable objects and to be notified about migration failures; the code
snippet in Listing 1.3 illustrates this.

Listing 1.3. Example for a migration listener implementation.

1 |public void migratableObjectArrived (MigrationEvent e) {
2 System.out.println("incoming migration associated with
object " + e.getObject());

3 |}

5 | public void migratableObjectContinuationFailed(
MigrationEvent e) {

6 System.out.println("migration associated with object "
+ e.getObject () + " failed:");

7 e.getError () .printStackTrace () ;

s |}

Supposed you have correctly set the PadRMI related properties like in the
standalone case and your migratable program HelloWorld is located at the path
specified in the padrmi.path property, you can start your program from an
enclosing Java application like this:



Object returnValue = padmig.Launcher.launch(new URL(
padrmi.Server.getDefaultServer().getURL() + "/"),
HelloWorld.class.getName(),
new Serializable[] { "hi", "there!" });

4 Translation Concepts

Before translating migratory methods, the PadMig compiler first checks if the
provided code is syntactically correct Java code and obtains its abstract syntax
tree using the Java transformation framework Spoon [15,10,7]. Then it per-
forms some integrity checks on the code, in particular if every class (or inter-
face) containing migratory methods implements (or extends, respectively) the
java.io.Serializable interface, and if none of the reserved variable names
__state, __tmpState, __parentState, __entryPoint, __stack, __t, __gen,
__tryNestingDepth cFlowBreakLevel is used inside migratory methods.
When overriding methods, either all or none of them can be migratory due
to the additional stack frame parameter; thus the PadMig compiler verifies that
a @Migratory or @Undock annotation of a method is compatible with all possi-
bly existing overridden methods. Finally, it ensures that there are no migratory
methods inside anonymous classes because stack frame containers can only be
created for named classes.

Then every migratory method is translated (other code passes through un-
changed). First, the signature of the method is changed in order to allow the
special throwable padmig.1ib.SaveStack to be thrown on a migration, and to
get the transmitted call stack passed in as a parameter on the remote side.
In particular, a parameter __parentState of type padmig.lib.StackFrame is
added to the parameter list and padmig.lib.SaveStack to the throws clause.

Before explaining the actual translation of a migratory method body in de-
tail, we have to regard two special cases: First, if the method to be translated
is an @Undock method, a helper method with the original signature is addition-
ally required, which invokes the translated migratory method and handles the
padmig.lib.SaveStack throwable (see listings 1.4 and 1.5 for an example). Sec-
ond, if the method to be translated is abstract or declared inside an interface, or
if the body of an ordinary @Migratory method contains no migratory invocation,
no further processing of the method body is required.

Next, an inner class extending padmig.lib.StackFrame is created for each
migratory method, which contains a field for each parameter of the method and
for each local variable that is not excluded from migration (see Listing 1.5).

Each translated method is structured as follows (see Listing 1.5): at the
beginning some PadMig specific variables and locals of the original method are
declared. In case the __parentState parameter is not null, the method call is a
continuation of the execution after a migration, which means that the values of
the locals have to be restored from the saved call stack, and that the entry point,
from where on to resume the execution, has to be set. The original method body
is enclosed in a try statement, whose catcher creates a new stack frame and saves

P ——



all the locals in case of a migration. The purpose of the endless while (true)
loop around the original method body will be explained later together with the
unfolding technique. Finally, the switch statement is used to jump back into
the original code at the correct entry point.

Listing 1.4. A simple example (Java code with PadMig annotations)

1 |import java.io.*;
2 | import padmig.*;

N

public class Example implements Serializable {

5 @Undock

6 public int foo(Object bar) throws MigrationException {
7 double myDoublelLocal;

8 @DontMigrate

9 long myLongLocal;

10 // method body

11 return 42;

12 }

13 |}

Listing 1.5. Output of the PadMig compiler for the example in Listing 1.4

1 |import java.io.*;
2 |import padmig.*;
3 |import padmig.lib.*;

5 | public class Example implements Serializable {

6 public int foo(Object bar) throws MigrationException {

7 try {

8 return foo(bar, null);

o } catch (SaveStack stack) {

10 return ((Integer) (padmig.lib.PadMigLib.

syncTransmit (stack)));

11 }

12 }

13

14 public class FooStackFrame extends StackFrame {

15 public Object bar;

16 public double myDoubleLocal;

17

18 public Object continueExecution() throws Exception,
SaveStack {

19 StackFrame frame = new EmptyStackFrame () ;

20 frame.child = this;

21 return ((Example) (self)).foo(null ,frame);

22 }

23 }

24

25 public int foo(Object bar, StackFrame __parentState)

throws SaveStack, MigrationException {




26 FooStackFrame __state = null;

27 FooStackFrame __tmpState;

28 int __entryPoint = 0;

29 int __cFlowBreakLevel;

30 double myDoublelLocal = O0;

31 long myLonglLocal = 0;

32 if (__parentState != null) {

33 __state = ((FooStackFrame) (__parentState.child));
34 __entryPoint = __state.entryPoint;

35 bar = __state.bar;

36 myDoubleLocal = __state.myDoublelLocal;
37 }

38 try {

39 while (true) {

40 __cFlowBreakLevel = -1;

41 switch (__entryPoint) {

42 case O:

43 // method body

44 return 42;

45 }

46 }

a7 } catch (SaveStack __stack) {

48 __state = new FooStackFrame();

49 __state.self = this;

50 __state.entryPoint = __entryPoint;

51 __state.bar = bar;

52 __state.myDoubleLocal = myDoubleLocal;
53 __state.child = __stack.bottomOfStack;
54 __stack.bottom0OfStack = __state;

55 throw __stack;

56 }

57 }

Now we are ready to have a look at the actual translation of a migratable
method. It is organized in two traversals of the syntax tree. During the first pass,
the following tasks are done:

— If migratable code occurs in places where it is not allowed or not supported,
the compilation is aborted. In particular, no migratable code is allowed in-
side assert statements, as the left-hand side of an assignment, in looping
expressions, in synchronized sections, in catchers, and in finalization blocks.

— Local variable declarations are moved to the beginning of the method, i.e.,
their scope is widened to the whole method. This is necessary because we
need to access them when saving their values in a stack frame upon a mi-
gration and when restoring their values from the stack frame on the remote
side (see Listing 1.5). Java ensures disjoint life ranges for local variables with
the same name of the same type; so such variables can be unified. However,
variables of different types must be disambiguated just to ensure static type
safety; thus if two or more variables with the same name but different types



exist, we will distinguish these variables by different appendices to their
name, uniquely identifying their types as well as their type arguments and
array dimensions if applicable.

The only variable declarations not moved are those declared as parameters
in catchers. On the one hand, it is not possible to move them due to the
Java language specification; on the other hand, it is also not necessary to do
so because catchers are not allowed to contain migratable code.

Ordinary for loops are converted into while loops by moving the initial
assignment(s) before the loop and the increment operation(s) to the end of
the loop.

Enhanced for loops (also known as foreach loops) are handled similarly:
If the looping expression is a subtype of java.lang.Iterable, a compiler
generated variable of type java.util.Iterator parameterized with the ap-
propriate type element is initialized before the loop; the hasNext () operation
is used as the new looping expression, and the value obtained via the next ()
operation is assigned to the respective local variable in a new first statement
of the loop’s body.

Else, if the looping expressing has an array type, a compiler generated vari-
able to hold a reference to the array and a second variable of type int to
iterate through the array are initialized before the loop; this iteration vari-
able is compared to the length of the array in the new looping expression;
as a new first statement of the loop’s body the particular array element is
assigned to the respective local variable, and as a new last statement the
iteration variable is increased.

All three cases are illustrated in Listings 1.6 and 1.7.

Loops, if-, switch-, and try-statements containing migratory invocations
are marked for unfolding during the second traversal of the syntax tree.
Statements containing one or more migratory invocations are expanded. This
is illustrated in Listings 1.8 and 1.9. If such statements would not be ex-
panded, this could lead to redundant execution of already executed code. In
the example, the call to foo () would be executed a second time at the migra-
tion destination, if a migration occurs and the statement were not expanded
using temporary variables.

Listing 1.6. A simple example of for loops to convert into while loops

for (i = 0, j = 42; i < 3; i++, j-= 2) {
// loop body
}

Set<String> set;

//

for (String s : set) {
// loop body

© W N O ;A W N e

}

-
o

String[] array;
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for (String t : array) A
// loop body

}

Listing 1.7. Converted loops from Listing 1.6
i = 0;
j o= 42;

while (i < 3) {
// loop body
i++;
=2

}

Set<String> set;

/7

String s;

Iterator<String>
__gen_java_util_Iterator_java_lang_String = set.
iterator () ;

while (__gen_java_util_Iterator_java_lang_String.hasNext
(ODIR
s = __gen_java_util_Iterator_java_lang_String.next();
// loop body

}

String[] array;

//

String t;

String[] __gen_java_lang_String_array = array;
int __gen_int = 0;

while (__gen_int < __gen_java_lang_String_array.length)
{
t = __gen_java_lang_String_array[__gen_int];
// loop body
__gen_int++;

}

Listing 1.8. A simple example for expansion of a statement

result = foo() + bar(myMigratoryMethod());

Listing 1.9. Expanded statement from Listing 1.8

tmpl foo )}
tmp2 myMigratoryMethod () ;
result = tmpl + bar(tmp2);




During the second traversal of the syntax tree, marked control structures
are unfolded. The idea behind unfolding is to reduce the control flow to basic
blocks with migratory invocations and then convert it into a finite automaton
implemented as a Java switch statement surrounded by an endless loop; the
state of the automaton, implemented as an int, serves as a symbolic program
counter during migration.

The loops, if-, switch-, and try-statements identified to contain migratory
invocations during the first syntax tree traversal are now rewritten as follows:

In order not to duplicate all code fragments of a loop body before, between,
and after migratory invocations or nested statements to be unfolded, the loop is
moved to the top level, and a switch statement is used to jump to the correct
entry point. At the end of a do loop, the looping condition is checked using
an if statement, and if the looping condition is still fulfilled, we jump back
to the top of the loop’s body by setting the correct entry point and using the
continue statement. In case loops subject to unfolding are nested, the hierarchy
is flattened this way, i.e., we only have one outer while (true) loop and switch
statement.

When unfolding a while loop, the negated looping condition is additionally
checked in the beginning to skip over the loop body in case the looping con-
dition is already initially false. Unfolding of both loop types is illustrated in
Listings 1.10 and 1.11.

Listing 1.10. A simple example for loop unfolding

1 |while (i < 3) {
2 // while loop body
3 |}
4
5 [do {
6 // do loop body
7 |} while (j < 5);
Listing 1.11. Unfolded code from Listing 1.10
1 | __entryPoint = 0;
2 |while (true) {
3 switch (__entryPoint) {
4 case O:
5 if (1 (i < 3)) {
6 __entryPoint = 2;
7 continue;
8 }
9 case 1:
10 // while loop body
11 if (i < 3) {
12 __entryPoint = 1;
13 continue;
14 }
15 case 2:




16 // code between while and do loop
17 case 3:

18 // do loop body

19 if (j < 56) {

20 __entryPoint = 3;
21 continue;

22 }

23 case 4:

24 return;

25 }

26 }

if statements are handled by inverting the conditional expression to jump
into the else part (if present) in case the condition is not fulfilled. An Example
is provided in Listings 1.12 and 1.13.

Listing 1.12. A simple example for unfolding an if statement

1 |if (4 == 0) {
2 // if body
3 |} else {
4 // else body
5 |}
Listing 1.13. Unfolded code from Listing 1.12
1 | __entryPoint = 0;
2 |while (true) {
3 switch (__entryPoint) {
4 case O0:
5 if (1(i == 0)) {
6 __entryPoint = 2;
7 continue;
8 }
9 case 1:
10 // if body
11 __entryPoint = 3;
12 continue;
13 case 2:
14 // else body
15 case 3:
16 return;
17 }
18 }

When processing a switch statement, a separate entry point is generated for
each case label (see Listings 1.14 and 1.15).

Listing 1.14. A simple example for unfolding a switch statement

1 | switch (i) {
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32

33

34

case 0:
// case 0 body
break;
case 1:
// case 1 body
// fall-trough into case 2
case 2:
// case 2 body
break;
default:
// default case
}

Listing 1.15. Unfolded code from Listing 1.14

__entryPoint = 0;
while (true) {
switch (__entryPoint) {
case O0:
switch (i) {
case O0:
__entryPoint = 1;
continue;
case 1:
__entryPoint = 2;
continue;
case 2:
__entryPoint = 3;
continue;
default:
__entryPoint = 4;
continue;
}
case 1:
// case 0 body
__entryPoint = 5;
continue;
case 2:
// case 1 body
case 3:
// case 2 body
__entryPoint = 5;
continue;
case 4:
// default case body
case b:
return;




If there are migratory invocations inside a try block, the block has to be
split before each migratory invocation. Each such code fragment is surrounded
by its own copy of the original try block. The exception handling code can
simply be copied for each of the new try statements, but finalization blocks
and labels require special treatment (cf. Listings 1.16 and 1.17). The finalization
code is only to be executed when the whole try block is executed to completion
without errors, when an exception occurs, or when the control flow is diverted
using return, break, or continue. For this purpose, the nesting-depth of each
try statement is determined, and the special local variables __tryNestingDepth
and __cFlowBreakLevel are introduced to indicate whether or not to run the
finalization code when leaving a copy of a split try statement. __tryNesting
Depth is increased at the beginning of a copy of a split try statement and
decreased at its end (except for the last copy) or when a SaveStack throwable
is caught as a result of a migration. __cFlowBreakLevel is set to —1 by default
and to the number of the outer-most finalization block to run if the control flow
is diverted. The finalization code is eventually surrounded by an if statement to
ensure that it is only executed if the __tryNestingDepth has not been decreased
or the __cFlowBreakLevel has been set accordingly.

Each copy (except the last one) of a split try statement is succeeded by code
to skip over the remaining copies in case of an abnormal termination, i.e., when
the __tryNestingDepth has not been decreased.

Finally, we need to remove unused catchers as not all the catchers might be
necessary in every copy of the try statement.

Listing 1.16. A simple example for unfolding a try statement

myLabel: try {

foo ()

if (x == 1) {

break myLabel;

}

myMigratoryMethod () ;
} catch (MyException e) {

// exception handling code
} finally A

// finalization code
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Listing 1.17. Unfolded code from Listing 1.16

__entryPoint = 0;

while (true) {
__cFlowBreakLevel = -1;
__tryNestingDepth = -1;
switch (__entryPoint) {
case 0:

try {
__tryNestingDepth = 1;

w N o A W N




° foo();

10 if (x == 1) {

11 __cFlowBreakLevel = 0;

12 __entryPoint = 2;

13 continue;

14 }

15 __entryPoint = 1;

16 __tryNestingDepth = 0;

17 } catch (MyException e) {

18 // ezception handling code

19 } finally {

20 if ((__cFlowBreakLevel == -1 && __tryNestingDepth
>= 1) || (__cFlowBreakLevel >= 0 &&
__cFlowBreakLevel < 1)) {

21 // finalization code

22 }

23 }

24 if (__tryNestingDepth > 0) {

25 __entryPoint = 2;

26 continue;

27 }

28 case 1:

29 try {

30 __tryNestingDepth = 1;

31 myMigratoryMethod (__state);

32 __state = null;

33 // __tryNestingDepth NOT decreased here because
this 1s the last part of a split try block

34 } catch (MyException e) {

35 // ezception handling code

36 } catch (SaveStack __t) {

37 __tryNestingDepth = O0;

38 throw __t;

39 } finally {

40 if ((__cFlowBreakLevel == -1 && __tryNestingDepth
>= 1) || (__cFlowBreakLevel >= 0 &&
__cFlowBreakLevel < 1)) {

a1 // finalization code

42 }

43 }

44 case 2:

45 return;

46 }

47 }

After the second traversal of the syntax tree we finally have to determine
and link the correct entry points for the structured non-local jumps caused by
break and continue statements. This completes the translation of a migratory
method.



5 Evaluation

In this section, we will discuss the impact of our translation approach in terms
of code growth and increased running time. The basic structure of an unfolded
method causes a small constant overhead by

— an additional method parameter,

— a few additional local variables (ints and references), including their initial
assignment,

— an if statement, whose body is only executed in case of a migration,

— a try statement, whose catcher will only be triggered in case of a migration,

— a while loop, which will be iterated more than once only if the translated
method contains at least one unfolded element or migration, and

— a switch statement, which will be evaluated once per iteration of the main
loop and which contains more than one case label only if the translated
method contains at least one unfolded element or migration.

The methods subject to unfolding are usually the big, central ones in a software
library; however, there are typically only a few of them, so that only a small
part of the total amount of code is concerned.

Only in case of a migration

an exception is thrown, caught, and passed on,

— a stack frame object is instantiated, consisting of a few basic member vari-
ables (ints and references) and additional members corresponding to all
locals on the stack that are not excluded from migration,

— all members of the stack frame object are initialized using flat copies of the

locals on the stack, and

the stack frame object is inserted into a linked list.

When the execution continues after a migration, all members of the stack frame
object are copied back into the local variables using flat copies.

Altogether, this overhead is negligible for an ordinary execution of a method
and minimal for a migration. In the following we will discuss the additional code
growth and running time increase caused by unfolding.

When if or switch statements are unfolded, no overhead is generated for
the if block or the first case block, respectively, and little constant overhead
(increase of symbolic program counter, one iteration of the main loop, and one
evaluation of the main switch statement) for the else block or all subsequent
case blocks, respectively.

In unfolded loops the loop condition is checked using an if statement at the
end of the loop body, so we have the same little constant overhead as for an
if statement per loop iteration (except the last iteration, where we fall through
into the code below the loop without overhead).

Only when unfolding try statements, we experience a notable overhead be-
cause the catchers and finalization code are copied (and transformed causing a
small constant overhead) once for every migratory invocation in the try block.



However, this affects typically only quite short portions of error handling code;
in particular, only about 3% of the code is usually enclosed by try statements
according to [16]. Furthermore, the running time does not increase because at
most one of the copied catchers is actually executed.

Nesting of unfolded elements does not cause any additional overhead. Alto-
gether, the overhead caused by unfolding is acceptable in terms of code growth
and negligible in terms of the running time. For Example, the total size of the
bytecode of PUB-Web grows from 413 KB to 423 KB, which is an increase of
2.4%.

The data transferred during a migration consists of the instance of the class,
whose method is subject to migration, all serialization dependencies, and the
contents of the stack from the topmost element up to the @Undock bound-
ary. Recall, that the developer can exclude stack elements from migration using
@DontMigrate and thus reduce the volume of the transferred stack contents to
the minimum. The absolute data volume transferred depends on the efficiency
of serialization. Beside manual fine tuning using the Externalizable interface,
Java’s default serialization mechanism can be substituted by more efficient drop-
in replacements. The “UKA-serialization” [11], for example, reduces the serializa-
tion overhead for objects, which are similar to our stack frame objects, notably
by 81% to 97% compared to JDK.

6 Conclusion

In this paper we have presented the PadMig Language Specification, which uses
annotations instead of additional keywords for the migration primitives, so that
developers can keep using their favorite IDE and only need to run the PadMig
compiler before the Java compiler to produce migratable code. Furthermore,
if they additionally need a non-migratable version of their program, they can
simply compile their code a second time leaving away the intermediate PadMig
compilation step, i.e., they do not need to maintain two versions of their code.

The PadMig compiler supports the Java 6 standard, is stable, efficient, and
produces user-friendly, meaningful error / warning messages on compilation
problems. In this paper, the translation concepts, especially the implementa-
tion of the unfolding technique, have been presented in detail.
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