
A Large-Scale Distributed Environment
for Peer-to-Peer Services ∗

June 2010
Technical Report tr-ri-10-317

Joachim Gehweiler Friedhelm Meyer auf der Heide Ulf-Peter Schroeder

Heinz Nixdorf Institute and Computer Science Department
Paderborn University, 33095 Paderborn, Germany

{joge, fmadh, ups}@uni-paderborn.de

Abstract
We present a large-scale distributed environment for
Peer-to-Peer (P2P) software. It enables developers to
run and debug their P2P software written in Java using
the JXTA framework with minimal effort: Via a web
frontend to the central server they can easily setup a
JXTA P2P network on a large number of computers
at different physical locations and upload their code.
By only one mouse click they can trigger an automated
configuration, start / stop / reset their test scenario, and
view debug output. For this purpose the central server
holds the complete configuration of the environment,
and automatically controls, configures, and updates all
computers of the environment. Except for the server,
no dedicated hardware is required; rather, our environ-
ment can be installed on existing Windows and Linux
computers, where it runs with lowered priority in order
not to disturb other users / processes. There is no pre-
scribed limit on the number of computers being part of
the environment; its current setup for the EU FP6-IST
project AEOLUS, for example, consists of more than
100 computers at 13 different locations in Europe. By
virtualization the number of peers can be increased by a

∗Partially supported by the EU within FP6-IST-2004-15964 (AE-
OLUS).

[Copyright notice will appear here once ’preprint’ option is removed.]

factor of up to 10. Further computers, which, e.g., may
act as a frontend to the P2P software or as a gateway
to special hardware such as sensor networks, can eas-
ily be integrated. Finally, our environment is secured
against both external attacks over the Internet and in-
ternal attacks via hijacked accounts or malfunctioning
software.

Keywords Large-Scale Distributed Environment, Peer-
to-Peer Services, Java, JXTA

1. Introduction
We present a large-scale distributed environment, which
enables developers to run and debug P2P software with
minimal effort. It was originally developed for test-
ing the overlay computing platform developed within
the EU FP6-IST project “Algorithmic Principles for
Building Efficient Overlay Computers” (AEOLUS).
Its current setup within the AEOLUS project at http:
//aeolus.cs.uni-paderborn.de/ consists of more
than 100 computers (and 1000 virtual nodes) located
at 13 different European universities and research in-
stitutes. However, its architecture is kept so general
and simple that it is suitable for running and debug-
ging any (P2P) services implemented in Java using the
JXTA framework [1, 7] with minimal effort. Develop-
ers can request a login for the existing installation or
easily setup an own installation. Via a web frontend
they can upload their code and (possibly parameter-
ized) configuration files, which are then automatically
deployed to a (large) number of computers (at possibly
different physical locations), which are configured as a
JXTA P2P network. Via the web interface the develop-

1 2010/6/30



ers can easily control their software and view its output
for debugging purposes. Also, they can easily connect
further computers to the environment, which, e.g., act
as a frontend to their software, as an interface to other
software, are equipped with special hardware, or work
as a bridge to other hardware such as wireless sensor
networks, for example.

Our approach differs from PlanetLab [2, 5] in that it
provides an environment for P2P software written in
Java using the JXTA framework, whereas PlanetLab
simply provides a network of virtual machines to the
developer, i.e., PlanetLab is a more general tool, al-
lowing to run and debug almost any kind of distributed
software; but, at the same time, such a general approach
involves quite some work to setup and configure every-
thing properly. For the purpose of developing P2P soft-
ware in Java using the well-established JXTA library
we provide a comfortable ready-to-use tool, i.e., our
approach significantly simplifies and speeds up the de-
velopers’ work. Furthermore, our environment can be
installed on existing Windows and Linux computers,
where it runs with lowered priority in order not to dis-
turb other users / processes, whereas PlanetLab must
be installed on additional hardware dedicated solely for
this purpose.

2. Architecture
The architecture of our system is depicted in Fig. 1. Its
main components are:

• the server which includes a web server, management
software, and a database with the system configura-
tion;

• edge peers: these are essentially the computing
nodes donated to the system by several different
partners;

• rendezvous peers: these nodes support special func-
tionalities of JXTA, which enable the edge peers to
locate each other and communicate;

• user nodes: through these nodes, developers access
the system. Beside using it through the web interface
and JXTA shell, specialized edge peers can be em-
ployed as user frontends or interfaces to other soft-
ware outside the system.

The server stores the configuration of the whole system
in its database; the configuration does not only include
setup parameters of all the edge peers, but also the soft-
ware and all testing parameters of all registered devel-

opers. This ensures that the system is able to automati-
cally recover the configuration of edge and rendezvous
peers after crashes, reboots, or even reinstallations of
the operation system. Additionally, it eases developers’
lives as they only have to upload and configure their
software once through the web interface of the server;
the server then automatically deploys the software to
edge peers, configures, and controls it, and collects the
output (stdout + stderr) on demand. The communica-
tion between the server and the edge / rendezvous peers
is secured by SSH (for Linux peers) resp. a user-defined
protocol (for Windows peers). Peers, which are part of
the same testing scenario, communicate using JXTA;
beside the peers assigned to the developer’s test case,
he / she can also add one or more own edge peers—
either a JXTA shell or specialized edge peers which
work as a user frontend or interface to other software
outside the system.

The rendezvous peers are a subset automatically se-
lected out of the edge peers by the server. The edge
peers are computers running Windows or Linux, do-
nated by different project partners; these computers
need not be exclusively dedicated to our system as the
software to test is executed on them with lowered pri-
ority in order not to disturb the owner of the computer
in his activities.

An Example for specialized edge peers is given by
gateways to special hardware. In the AEOLUS project,
e.g., 289 wireless sensors of heterogeneous types lo-
cated at 11 different sites have been connected to the
system via gateway edge peers.

3. Requirements
For the server a Linux machine is required. In the par-
ticular case of the current setup within AEOLUS, a
multiprocessor machine with a gigabit backbone con-
nection and a softraid system running the Ubuntu
Server Edition is used, hosted by the University of
Paderborn.

In order to setup your own installation, the main re-
quired software components (which are usually part
of every modern Linux distribution) are the follow-
ing: ssh, cron, bash, perl, gcc, libc, Java (Sun JDK
version 6.0 or later), MySQL database, Apache web
server, Apache PHP plugin. Instructions on how to
properly configure these software components are usu-
ally shipped together with them and can additionally be
found on the distributors’ particular web pages. Spe-

2 2010/6/30



...

...

JXTA

SSH / user-def.

HTTP

Testbed Installation-

and Web-Server

Database with 

Testbed 

Configuration

Rendezvous Peers

...

Edge Peers

Gateways

...

Edge Peers in 

Private Subnet

JXTA Shell

or Specialized

Edge Peer

Testbed User

Figure 1. The System / Network Architecture.

cific instructions on how to install the server are in-
cluded in the distribution.

Once the server is setup, edge peers can be added
to the system. These can be either Windows or Linux
computers. In order to comply with the strict security
regulations of different networks, the requirements for
integrating computers into the system are kept as low as
possible. In particular, the requirements for Windows
nodes are as follows: Windows 2000/XP/2003/Vista/7,
a public IP address, open TCP port 2022 for system
management and ports 9700-9799 for JXTA (these de-
fault values can be changed in case these ports are al-
ready occupied by other software). The installation pro-
cedure using the Windows installer is very simple: dur-
ing the setup you are asked to enter your login and pass-
word, and you may change the default values for the
TCP ports; the rest is done automatically.

For Linux nodes, the requirements are as follows:
Kernel 2.6.x, ssh, bash, perl, tar, gzip (typically present
on every distribution), a public IP address (or a gate-
way), open TCP port 22 (SSH) for system management

and ports 9700-9799 for JXTA. Since an automated in-
staller is not yet available, the installation procedure in-
volves the manual setup of a dedicated ordinary user
account (without root privileges); you need to provide
the IP address, ports (when deviating from the default
values), and the login to the testbed administrator and
install an SSH key for automated login.

We remark that there is no need to install Java since
our software comes with its own Java installation in
order to assure that all edge peers are running the same
Java version and have all required libraries installed.

4. Security Aspects
The system is secured against different types of at-
tacks. On the one hand, to prevent outside attackers
from gaining unauthorized access, a multilevel security
model is applied. First, all management / installation /
configuration traffic with the Linux nodes is tunneled
using SSH with DSA keys (or RSA keys if DSA is not
supported) of a reasonable strength; second, our soft-
ware completely runs in user space, i.e., even if a con-

3 2010/6/30



nection would be hijacked, nothing outside this dedi-
cated user account could be damaged. For the Windows
nodes, all connections to the management port from an-
other IP address than the server are dropped; second, a
fixed set of reactive commands is defined, i.e., a com-
mand can only be triggered from outside without any
parameters and the local process then collects the re-
quired options itself (thus, no invalid options can be
used).

On the other hand, the system is also secured against
internal attacks. In case, for example, a user does not
properly protect his password, an attacker can neither
hack other user accounts nor hijack any computers of
the system. This is due to the security policy of the Java
Sandbox which is configured in such a way that the up-
loaded code can only access files in the local folder and
only open network sockets on ports above 1024 (thus,
computers “infected” by malicious uploaded code can
only produce a high CPU and network load in the worst
case).

5. Testing a P2P Service
As already mentioned in the introduction, P2P software
to be tested has to be written in Java using the JXTA
library. In order to both provide a uniform interface
to our system and simplify developer’s lives, our API
already includes basic implementations of JXTA P2P
services and service discoveries.

To execute and test a particular piece of software, the
user typically performs the following steps:

1. Allocate a number of computing nodes;

2. configure them as edge peers of a JXTA P2P net-
work;

3. upload his / her code to test;

4. run / debug the software.

To ease this procedure as much as possible, most of
these tasks are done automatically. The server holds the
complete configuration of all test setups of all users
and automatically installs and configures the comput-
ing nodes. Moreover, it automatically recovers com-
puters which were temporarily unavailable or even suf-
fered a loss of data.

Computing nodes are allocated via the web interface
of the server, and afterwards the software to test (and all
its configuration files) are uploaded. The server then au-
tomatically delivers all components of the software to
the allocated computing nodes, configures them prop-

erly, and runs the software. For debugging purposes,
the output of all peers can be viewed via the web inter-
face.

In order to allow scalability tests with a huge number
of computing entities, our system is able to simulate up
to 10 virtual nodes per physical computing node; the
number of requested virtual nodes has to be specified
during the allocation step.

In order not to interfere with other users when recon-
figuring or restarting the P2P network (or when your
software to test appears to be buggy), a separate JXTA
network is setup for each test case.

As not all P2P applications consist of totally homo-
geneous peers, the code and configuration files to be
uploaded to the edge peers can be individually con-
figured on a peer basis. Furthermore, there is a set of
scripted constants supported, e.g., __IP__ which is au-
tomatically replaced by the edge peer’s IP address in all
configuration files.

Some applications require peers outside our system,
e.g., as a user frontend or interface to other software
outside our system. Our API provides a framework to
implement a specialized edge peer for such a case. To
connect these peers to a JXTA network in our system,
the location and port of the rendezvous peer is dis-
played in the web interface.

As an example for a use case of our system we re-
fer to the Paderborn University BSP-based Web Com-
puting (PUB-Web) library [3, 4], which is a P2P par-
allel volunteer computing system. During the develop-
ment of novel distributed load balancing strategies, e.g.
[6], our environment can be used to support the devel-
opers in testing, debugging, and evaluating their algo-
rithms: After uploading the code and the configuration
files of the PUB-Web library, they can easily config-
ure a P2P network, start / reset the PUB-Web network,
and view the debug output through the web interface or
our environment. In order to actually run a parallel pro-
gram, a specialized edge peer is required because the
developers need access to the graphical user interface
at one of the peers in the PUB-Web network. As a very
simple example think of a parallel program rendering
the Mandelbrot image: A user behind a PUB-Web peer
simulated on a specialized edge peer enters the param-
eters of the Mandelbrot image to draw (cf. Fig. 2). The
PUB-Web software then requests a number of com-
puting nodes from a PUB-Web supernode discovered
through a lookup in our JXTA network. Then the PUB-

4 2010/6/30



1) req
uest n

peers

2) list
 of as

signe
d pee

rs

4) executing the program

on the assigned peers

3) upload code + parameters
5) output of the program

Arbitrary

Supernode

Peer

User

Figure 2. Example for a Use Case.

Web software on the specialized edge peer uploads the
parallel Mandelbrot code and the parameters to the as-
signed subset of our JXTA network, where the Mandel-
brot code is executed, and finally composes the image
out of the output sent back from the peers.

Setting up such a testing scenario in a distributed
environment without our system would require a lot
of manual (remote) configuration work. But via the
web interface of our environment it is just one click
to upload code or to start / stop / reset the testing
scenario, which significantly improves the workflow of
a developer.

6. Conclusion
We have presented a large-scale distributed environ-
ment for P2P software written in Java using the JXTA
framework. Via a web frontend to a central server,
which holds the complete configuration and automat-
ically controls, configures, and updates the computers
of the environment, developers can test their software
on a big number of computers at different physical lo-
cations with minimal effort.

Future improvements of the environment include not
only a fully automated setup for the Linux case; in
order to support dynamic IP addresses, the network
interface could be monitored by our software (currently
the IP address is only determined on the computers in
our system during the startup of our software). Also,
employing an auditing technique is conceivable as an
additional security feature (traceability).

References
[1] The JXTA community. Website: https://jxta.dev.

java.net/.
[2] PlanetLab. Website: http://www.planet-lab.org/.
[3] The Paderborn University BSP-based Web Computing

(PUB-Web) library. Website: http://pubweb.cs.

uni-paderborn.de/.
[4] O. Bonorden, J. Gehweiler, and F. Meyer auf der Heide.

A web computing environment for parallel algorithms in
Java. In Proceeedings of International Conference on
Parallel Processing and Applied Mathematics (PPAM),
Poznan, Poland, September 2005.

[5] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: an overlay
testbed for broad-coverage services. SIGCOMM Com-
put. Commun. Rev., 33(3):3–12, 2003. ISSN 0146-4833.

[6] J. Gehweiler and G. Schomaker. Distributed load bal-
ancing in heterogeneous peer-to-peer networks for web
computing libraries. In Proceeedings of 10th IEEE/ACM
International Symposium on Distributed Simulation and
Real Time Applications (DS-RT), pages 51–58, Torre-
molinos, Malaga, Spain, October 2006.

[7] L. Gong. JXTA: A network programming environment.
IEEE Internet Computing, 5:88–95, 2001. ISSN 1089-
7801.

5 2010/6/30


